
F Fermi National Accelerator Laboratory

FERMILAB-Pub-96/060-A

Statistics of Extreme Gravitational Lensing Events. II.
The Small Shear Case

Yun Wang and Edwin L. Turner

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

July 1996

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.



FERMILAB-Pub-96/060-A, astro-ph/9607076

July 15, 1996

Statistics of Extreme Gravitational Lensing Events. II.

The Small Shear Case

Yun Wang

NASA/Fermilab Astrophysics Center

Fermi National Accelerator Laboratory, Batavia, IL 60510-0500

email: ywang@fnas12.fnal.gov

Edwin L. Turner

Princeton University Observatory

Peyton Hall, Princeton, NJ 08544

email: elt@astro.princeton.edu

Abstract

We consider an astrophysical system with a population of sources and a

population of lenses. For each pair of source and lens, there is a thin on-axis

tube-like volume behind the lens in which the radiation 
ux from the source is

greatly increased due to gravitational lensing. Any objects (such as dust grains)

which pass through such a thin tube will experience strong bursts of radiation,

i.e., Extreme Gravitational Lensing Events (EGLE). We study the physics and

statistics of EGLE for the case in which the shear is larger or comparable to the

�nite source size. We �nd that the presence of shear has only a small e�ect on

the EGLE statistics.
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1. Introduction

Gravitational lensing in the context of direct observations of lensed sources has been

studied extensively in past years (Blandford and Narayan 1992, Schneider et al. 1992

and references therein). Recently, we proposed a new way of looking at gravitational

lensing, the statistics of extreme gravitational lensing events (EGLE), which may have

signi�cant astrophysical e�ects (Wang and Turner 1996, hereafter referred to as Paper I).

We introduced the basics of EGLE in Paper I, where we considered the case in which the

�nite source size is more important than shear. In this paper, we discuss the case in which

shear can not be neglected.

Extreme gravitational lensing events (EGLE) occur when the source, lens, and observer

(or target) are nearly on-axis. In the statistics of EGLE, we consider an astrophysical

system of diameter Dc, in which both the sources and lenses are uniformly distributed, and

the targets can be the fragile objects in the same system, such as dust grains, etc.

If the target moves a distance d away from the line connecting the source and the lens,

it is equivalent to the source moving an angular distance of y from the optical axis (the line

connecting the lens and the target). Measuring y in units of the angular Einstein radius,

we have

y '
�
Dds

Dd

�
d

Ds�E
; (1)

where Dds, Ds, and Dd are angular diameter distances between the lens and source, target

and source, target and lens respectively. �E =
q
2RSDds=(DdDs) is the angular Einstein

radius. RS = 2GM is the Schwarzschild radius of the lens with mass M . Eq.(1) is the small

angle approximation, valid for d� Dd. The dimensionless radius of a source with physical

radius � is de�ned to be R � �=(Ds�E).

For a given pair of lens and source, the shear 
 due to other mass inhomogeneities near

the line-of-sight is the same order of magnitude as the optical depth for microlensing, � , the
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probability that the source is lensed. We �nd [see Appendix]


 =
p
2 �

�
3

2

�
� ' 3:7 �: (2)

� (x) is the Riemann zeta function. Not surprisingly, the statistics of EGLE is much more

complicated for sheared lenses than for isolated lenses (
 = 0).

The lens model for a perturbed Schwarzschild lens (i.e., point mass lens with shear)

has been investigated by Chang and Refsdal (1979, 1984) and Subramanian and Chitre

(1985). The magni�cation of extended sources by a perturbed Schwarzschild lens has been

studied by Chang (1984), Schneider and Weiss (1987). In Paper I, we showed that shear is

not important for 
 < R� 1.

In this paper, we study the statistics of EGLE for sources with small dimensionless

radius R and slightly sheared lenses (
 � 1), with 
 � R. We generally follow the notation

and conventions of Schneider et al. (1992) and Paper I.

2. The perturbed Schwarzschild lens

In this section, we study the basic properties of a perturbed Schwarzschild lens. In

the absence of shear, the caustic (which corresponds to in�nite magni�cation) of a point

mass lens in the source plane is a point (intersection with the optical axis). If the shear of

a macrolens at the location of the point mass lens is 0 < 
 < 1, the caustic in the source

plane changes from a point to an astroid shaped closed curve with four cusps, assuming

that the surface mass density of the macrolens is zero at the location of the point mass lens.

Let us de�ne

Y =
yp
1 + 


; � =
1� 


1 + 

: (3)

The caustic curve intersects the Y1 axis at �(1 � �), the Y2 axis at �(1 � �)=
p
�. For
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 � 1, the caustic is described by

Y1 = �2
 cos3 �; Y2 = 2
 sin3 �: (4)

As we discussed before, moving the observer away from the line connecting the source and

lens is equivalent to moving the source relative to the optical axis. When a source moves

o� the optical axis, if it moves along Y1 = 0 or Y2 = 0, it crosses a cusp; if it moves along

Y1 = Y2, it crosses a fold. All observables for a source moving o� the optical axis in an

arbitrary direction fall between the two limits set by Y1Y2 = 0 and Y1 = Y2. We therefore

restrict our attention to these two relatively simple cases below.

The lens mapping equation can be solved exactly for Y1Y2 = 0. (Chang & Refsdal

1979 & 1984, Subramanian & Chitre 1985) For a point source moving along the Y1 axis, its

magni�cation is

�p (jY1j � 1� �) =
1

(1 + 
)2
(1� �)(1 + �)� Y 2

1

� [(1� �)2 � Y 2
1 ]

;

�p (jY1j > 1� �) =
1

(1 + 
)2
Y1 [Y

2
1 + (3�� 1)]

�
q
Y 2
1 + 4� [Y 2

1 � (1� �)2]
: (5)

For a point source moving along the Y2 axis, its magni�cation is

�p

 
jY2j � 1� �p

�

!
=

1

(1 + 
)2
(1� �)(1 + �) + �Y 2

2

� [(1� �)2 � �Y 2
2 ]

;

�p

 
jY2j > 1� �p

�

!
=

1

(1 + 
)2
Y2 [Y

2
2 + (3� �)]q

Y 2
2 + 4 [�Y 2

2 � (1� �)2]
: (6)

For 
 � 1, 1� � ' 2
, Y ' y. Let us de�ne

y =
y

2

; R =

R

2

: (7)

Then, for y2 = 0,

�p (jy1j � 1) =
1




1

1� y21
; �p (jy1j > 1) =

1




y1
2 (y21 � 1)

1 + 2
2y21q
1 + 
2y21

: (8)
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For a small source with R <� 0:2, the maximum magni�cation is given by �p (jy1j � 1), with

(1� y1) '
�
1:2R

�0:73
. For y1 = 0, just replace y1 with y2. Figure 1 shows the lightcurves

for R = 0:01, 0.1, 0.4, 1 and y2 = 0. Note that the smaller the source size compared to

the shear, the larger the magni�cation of the source near the caustic; the peaks in the

lightcurves correspond to caustic-crossing.

For a source moving along the diagonal line y1 = y2, (
 � y) gives the source's distance

to the caustic. For a small source with R <� 0:2, the maximum magni�cation is given by

the point source magni�cation �p(y), with (0:5� y) = 0:67R. The magni�cation of a point

source near the caustic is given by (Chang and Refsdal 1984)

� (y ! 0:5) ' 1




0:3p
0:5� y

: (9)

For a very small source (R <� 0:02) (Chang and Refsdal 1984),

�e
�
R; y

�
' 1




0:3p
R
�(w); w =

y � 0:5

R
; (10)

�(x0) =
2

�

Z zmax

�1
dz

vuut 1� z2

�(z + x0)
; if jx0j < 1; zmax = �x0; else zmax = 1:

Figure 2 shows the lightcurves for R = 0:01, 0.1, 0.4, 1 and y2 = y1. Again, the peaks in

the lightcurves correspond to caustic-crossing.

For R >� 0:01, we �t �max (R; 
) with the following formulas:


�max =

h
1� w(R)

i
R

+
w(R)

2R
2=3

; cusp-crossing (y2 = 0);


�max =

h
1� w(R)

i
R

+
0:3665p

R
w(R); fold-crossing (y2 = y1): (11)

w = exp
h
�R(1 +R)=2

i
is the weight function. The above �t formulas underestimate the

maximum magni�cation by about 20-30% when the size of the source is comparable to the

size of the region enclosed by the caustic curve. Note that for 
 = 0 (R = 1), we recover

�max = 2=R, the exact result used in Paper I. For R < 1 [i.e., R < 2
], �max < 2=R.
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3. EGLE volume statistics: general description

Let us consider a mixed population of uniformly distributed sources (with number

density nS) and lenses (with number density nL) con�ned in a volume of diameter Dc. We

are interested in computing the volume fraction of space in which the 
ux exceeds f due to

gravitational lensing, i.e., the volume fraction of space in EGLE tubes with 
ux > f .

Note that in EGLE statistics, both 
 and R depend on distances. We write

R = R0

s
t

x(t+ x)
; 
 =

8><
>:


0 tx; t + x � 1;


0 tx=(t + x); t+ x > 1:
(12)

where

t � Dd

Dc

; x � Dds

Dc

;

R0 � �p
2RSDc

; 
0 � 3:7�0: (13)

� is the physical radius of the source, �0 is the optical depth at Ds = Dc.

For a source with luminosity LS, the unlensed 
ux f0 = LS=[4�D
2
s ]. As in Paper I, we

de�ne

� �
"
�
=0
max(R)

f=f0

#2������
Dd=Dds

Ds=Dc

=

"
(2=R0)

(f=fmin)

#2
=

8RSDc

�2

 
LS

4�D2
cf

!2

; (14)

where fmin = LS=[4�D
2
c ]. � measures the maximum magni�cation of the source relative to

the 
ux f , in the limit of zero shear.

We use the simple but reasonable approximation:

�e(y;R; 
) '

8>>>>><
>>>>>:

�p(y; 
) for � < �max

�max elsewhere

(15)

where �p(y; 
) is the point source magni�cation in the presence of small shear, and �max is

the maximum magni�cation. For 
 = 0, we recover the approximation used in Paper I. Let
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us write [see Eq.(11)]

�max = [1� w (R=
)]
2

R
+ w (R=
) �max(
 � R): (16)

w (R=
) is a weight function. For 
 � R, we recover the exact formula used in Paper I.

For a given pair of lens and source, we de�ne the EGLE tube with minimum 
ux f

to be the small tube-shaped volume behind the lens in which the 
ux exceeds f due to

gravitational lensing. For a given pair of lens and source with separation x = Dds=Dc,

the length of the EGLE tube is tmax = Dmax
d =Dc; i.e., the EGLE tube extends from t = 0

to t = tmax. The minimum magni�cation needed at a point inside the EGLE tube is

� = f=f0 = (t + x)2 f=fmin, the unlensed 
ux f0 = LS=[4�D
2
s ] = fmin=(t + x)2. The length

of the EGLE tube is given by setting � = �max(t; x).

The cross-section of the EGLE tube at a distance of Dd behind the lens along the line

SL which connects the source and the lens, �(Dd; f), is the area perpendicular to SL in

which the magni�cation exceeds � = f=f0, i.e., the 
ux exceeds f . The cross-section of the

EGLE tube can be written in the form

�(Dd; f) = 2�RSDc

 
fmin

f

!2 "
t

x(t+ x)3

#
��; �� � �2

�
�: (17)

� = �=[d(�)=y(�)]2 is the cross-section of the EGLE tube in units of Einstein radius squared

[see Eq.(1)]. For R = 
 = 0, � = �d2(�), � ' 1=y, hence �� = 1. For 
 6= 0, �� = ��(
�).

The volume fraction of space occupied by EGLE tubes in which the 
ux exceeds f , FL,

can be computed using the same method as in Paper I.

For a given lens and source pair, the associated EGLE tube with minimum 
ux f has

the volume

VSL(f) =
Z Dmax

d

0
dDd �(Dd; f) = 2�RSD

2
c

 
fmin

f

!2

� 1
x

Z tmax

0
dt

t

(t + x)3
��(t; x): (18)
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The volume fraction of space in EGLE tubes of 
ux > f for a given lens is

VL(f) = 4�nS

Z Dc

0
dDdsD

2
ds VSL(f): (19)

The volume fraction of space in EGLE tubes of 
ux > f is

FL(f) = nLVL(f) � FL(f;R = 
 = 0) I(�;R0=
0); (20)

where FL(f;R = 
 = 0) is the volume fraction of space in EGLE tubes of 
ux > f for point

source in the absence of shear (see Paper I),

FL(f;R = 
 = 0) = 4�2nSnLRSD
5
c

 
fmin

f

!2

; (21)

and

I(�;R0=
0) =
FL(f; �; 
)

FL(f; � = 0 = 
)
= 2

Z 1

0
dxx

Z tmax

0
dt

t

(t + x)3
��(t; x): (22)

I(�;R0=
0) is the modi�cation factor in EGLE volume fraction due to non-zero shear

or/and �nite source size. For 
0 = 0, I(�;R0=
0) = I(�) (see Paper I).

For given �nite ratio R0=
0, I(�;R0=
0) has the following asymptotic behavior. At

very large �, both R and 
 become negligible, and I(�;R0=
0) approaches 1. If � is not too

small, EGLE tubes with 
ux > f exist for arbitrary source-lens separations (0 < Dds � Dc).

When � is su�ciently small, EGLE tubes with 
ux > f do not exist for source-lens

separations larger than the maximum Dmax
ds < Dc. For decreasing �, the EGLE tubes with


ux > f decrease in length and they require smaller source-lens separations; when the

EGLE tubes are su�ciently short and require su�ciently small source-lens separations,

R > 
, the �nite size of the source dominates [see Eq.(12)], and I(�;R0=
0) approaches

I(�).
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4. EGLE volume statistics for 
 6= 0, R 6= 0

In the presence of shear, the EGLE tube has very complicated topology. For given R,


 6= 0 always leads to smaller �max [see Eq.(11)], hence shorter EGLE tubes. The cross

section of an EGLE tube is determined by the shape of the caustic curve [with both cusps

and folds] in the source plane. For 
 6= 0, the volume in which the 
ux produced by EGLE

exceeds the critical value has the topology of a �lled tube over most of its length, but near

the end of the tube a complex geometry develops re
ecting the cusp and fold natures of the

caustic.

For a point source, the EGLE tube has an astroid shaped cross section until Dd = D0
d,

with D0
d given by f=f0(D

0
d) = 1=
. For Dd > D0

d, the EGLE tube is hollow at the center,

with walls tapering o� to in�nity away from the center; the walls are thicker and rounded

in the cusp directions, and thinner with steep outside surfaces half-way between the cusp

directions. The walls taper o� more quickly half-way between the cusp directions than in

the cusp directions.

For a �nite source, if the source is su�ciently large (R > 2
), the EGLE tube ends

without the shear-induced hollow and the e�ect of shear is negligible. If R < 2
, the EGLE

tube has a topology similar to the R = 0 case, except that the shear-induced hollow has

walls which end at a �nite distance behind the lens, the walls stretch furthest in the cusp

directions, and shortest half-way between the cusps; i.e., the end of the EGLE tube is a

hollow volume, with thinning walls which terminate in four rounded legs centered in the

cusp directions.

The volume of an EGLE tube for 1 � 
 > R > 0 is between the volume of an EGLE

tube assuming cusp-crossing only and the volume of an EGLE tube assuming fold-crossing

only. Compared to the point source magni�cation in the absence of shear (dashed curve in

Figs.1-2), for a given magni�cation of the source, the sheared lens (with 
 > R) leads to
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a much larger cross-section for cusp-crossing [see Figure 1] and a smaller cross-section for

fold-crossing [see Figure 2]. Therefore, the volume modi�cation factor I(�;R0=
0) should

be smaller in the fold-crossing case than in the zero shear case; but it can be larger in the

cusp-crossing case than in the zero shear case, because of the signi�cant thickening of the

EGLE tubes at the ends away from the lenses.

In this section, we use Eq.(11) to compute the EGLE tube lengths, and

�p(y) = �p(y; 
 6= 0; R = 0) to compute the EGLE tube cross-sections.

The cross-section of the EGLE tube can be expressed in terms of the dimensionless

parameter �� = �2 �=� [see Eq.(17)], where � = �=[d(�)=y(�)]2 is the cross-section of the

EGLE tube in units of Einstein radius squared,

� = �
�
y2(2) � y2(1)

�
: (23)

y(2) and y(1) are roots of �e(y; 
) = �, y(2) > y(1) � 0 (if �e(y; 
) = � only has one root, then

we denote it by y(2), and set y(1) = 0). For 
 � 1, 
 �e(y; 
) only depends on y � y=(2
).

Then

�� = 4�2
h
y2(2) � y2(1)

i
; � � 
�: (24)

y(2) and y(1) are roots of 
 �e(y; 
) � �e(y) = �, y(2) > y(1) � 0 (y(1) = 0 if only one root

exists).

For � <� 0:1=
, the shear on the lens has negligible e�ect on the lightcurve, hence

�� = 1 as in the R = 
 = 0 case. For � >� 0:1=
, we can compute �� using the point

source and small shear lightcurves shown in Figs.1-2, for cusp-crossing and fold-crossing

respectively. For cusp-crossing, we can compute �� analytically using Eq.(8). We �nd

��(cusp-crossing) =

8><
>:
h
1 +

p
1 + 16�2 + 8�

i
=2; � � 1;h

1 +
p
1 + 16�2

i2
=4; � < 1;

(25)

where � � 
�. Note that for � = 0 (i.e., 
 = 0), we recover �� = 1. For fold-crossing, we

have to �nd the roots of 
 �e(y; 
) � �e(y) = � numerically to compute ��.
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To estimate the e�ect of shear on the EGLE volume fractions, we write

Iavg(R0; 
0) =
Icusp(R0; 
0) 2
0R0 + Ifold(R0; 
0) [(2
0)

2A� 2
0R0]

(2
0)2A
; (26)

where A = 5�=32 is 1
4
the area of the astroid enclosed by the caustic curve [in units of

(2
0)
2]. The averaged EGLE volume fraction is only slightly larger than the EGLE volume

fraction assuming fold-crossing only, because most of the caustic is fold.

In Fig. 3, we show the modi�cation factor in EGLE volume fraction due to �nite

source size and non-zero shear, Iavg(�;R0=
0), for R0=
0 = 10, 1, 0.1, 0.01, 0.001. The

R0=
0 = 10, 1 curves are indistinguishable from the 
 = 0 curve (dashed line). Note that all

curves in Fig.3 converge to the 
 = 0 curve at small and large �, as discussed at the end of

last section. Note that the e�ect of 
 6= 0 decreases at both extremes of large � [small 
ux

or high magni�cation] and small � [high 
ux or low magni�cation]. Clearly, the presence of

shear has only a moderate e�ect on the EGLE volume fractions.

For objects which enter an EGLE tube perpendicular to the lens-source line, the EGLE

durations are longest in the cusp directions, and shortest half-way between the cusps. Since

the EGLE durations also depend on the angle at which an object enters the EGLE tube,

the e�ect of shear on the EGLE durations should be negligible statistically also.

5. Summary

We �nd that the presence of small shear [comparable or larger than the dimensionless

source size] has only a small e�ect on the EGLE volume fractions. Speci�cally, the EGLE

volumes are typically decreased by factors of a few for 
0 � 102R0 [the characteristic

dimensionless shear 
0 and source size R0 are de�ned in Eq.(13)] at moderate values of �

[which measures the maximum magni�cation of the source in the limit of zero shear relative

to the 
ux f ] and otherwise una�ected, see Fig. 3. This means that the 
 = 0 results given
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in Paper I will be adequate for most order of magnitude considerations.

It is quite reasonable that the e�ect of R <� 
 � 1 is modest since the convergence

provided by the EGLE lens itself constrains the total 
ux concentrated into the EGLE

tube. The small shear considered in this paper only rearranges this 
ux somewhat into a

slightly modi�ed EGLE volume, especially near the end of the EGLE tube.

Y.W. is supported by the DOE and NASA under Grant NAG5-2788. E.L.T. gratefully

acknowledges support from NSF grant AST94-19400.

Appendix: Derivation of 
(�)

Here we derive the shear 
 due to other mass inhomogeneities near the line-of-sight

for a given pair of lens and source, in terms of the optical depth for microlensing, � , the

probability that the source is lensed.

We assume that the EGLE lens [the lens under consideration] is embedded in a

distribution of identical lenses with surface number density �, each lens has the same

angular Einstein radius �E associated with it. The total shear on the EGLE lens is


 =
1X
j=1

�2E
(j�)2

�
2��j�2

�1=2
=

p
2�� �2E
�

1X
j=1

1

j3=2
; (1)

where � = 1=
p
�� is the dimensionless distance between two adjacent lenses. Using

� = ���2E , and
P
1

j=1 j
�3=2 = �(3=2) ' 2:6124 [where �(x) is the Riemann zeta function], we

obtain


 =
p
2 �

�
3

2

�
� ' 3:7 �: (2)
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Fig. 1.| The lightcurves for y2 = 0 (cusp-crossing), R=(2
) = 0 (dotted line), 0.01, 0.1, 0.4,

1 (solid lines). The dashed line is the lightcurve for R = 
 = 0.

Fig. 2.| The lightcurves for y2 = y1 (fold-crossing), R=(2
) = 0 (dotted line), 0.01, 0.1, 0.4,

1 (solid lines). The dashed line is the lightcurve for R = 
 = 0.

Fig. 3.| The modi�cation factor in EGLE volume fraction due to �nite source size and

non-zero shear, Iavg(�;R0=
0)=I(�;R0=
0 =1), for R0=
0 = 10 (solid line), 1 (dotted line),

0.1 (short dashed line), 0.01 (long dashed line), 0.001 (dot-short dashed line).
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Fig. 1.| The lightcurves for y2 = 0 (cusp-crossing), R=(2
) = 0 (dotted line), 0.01, 0.1, 0.4,

1 (solid lines). The dashed line is the lightcurve for R = 
 = 0.
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Fig. 2.| The lightcurves for y2 = y1 (fold-crossing), R=(2
) = 0 (dotted line), 0.01, 0.1, 0.4,

1 (solid lines). The dashed line is the lightcurve for R = 
 = 0.
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Fig. 3.| The modi�cation factor in EGLE volume fraction due to �nite source size and

non-zero shear, Iavg(�;R0=
0)=I(�;R0=
0 =1), for R0=
0 = 10 (solid line), 1 (dotted line),

0.1 (short dashed line), 0.01 (long dashed line), 0.001 (dot-short dashed line).


